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SHORT  
COMMUNICATIONS 

1,3-Dioxanes are practically important oxygen-
containing heteroanalogs of cyclohexane. Protonation 
of these compounds, as well as of other 1,3- and  
1,3,2-heterocycles, gives cyclic oxonium ions. The 
latter are formed as intermediates in numerous acid-
catalyzed heterolytic reactions involving cyclic boron 
acid esters, 1,3-dioxa-2-silacyclohexanes, and cyclic 
acetals, which lead to formation of esters, 1,3-diols, 
and other valuable products of organic and petro-
chemical synthesis [1–4]. However, oxonium ions 
could be detected experimentally only at temperatures 
below –50°C, which strongly restricts the applicability 
of physical methods for studying fine details of their 
structure; therefore, such information is lacking in the 
literature. We thought it reasonable to examine the 
structure and conformational behavior of such species 
by quantum-chemical methods. The present com-
munication reports on the results of comparative study 
of the potential energy surfaces (PES) of unsubstituted 
1,3-dioxane (I) and its protonated form II in the gas 
phase in terms of the STO-3G and 6-31G** non-
empirical methods. The calculations were performed 
using HyperChem software package [5].  
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According to published data, compound I in 
solution gives rise to fast (on the NMR time scale)  
ring inversion with a potential barrier ∆G≠ of 9.7– 
10.1 kcal/mol [6]. We have found that the conforma-
tional isomerism C ↔ C* can take two pathways, each 
including (in addition to global minima corresponding 
to conformers C and C* which are degenerate in 
energy) two local minima (flexible twist forms 2,5-T 
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Scheme 1. 

and 1,4-T) and two maxima [transition states TS-1 and 
TS-2 corresponding to sofa (S), half-chair (HC), sym-
metric boat (SB), and unsymmetric boat (UB) con-
formations; Table 1, Scheme 1) on the potential energy 
surface [7]. 

According to both calculation procedures, the 
population of 1,4-T is slightly greater. On the other 
hand, the two pathways pass through the same global 
maximum TS-1, and hence they are almost equally 
probable. This is confirmed by good agreement 
between the experimental (∆G≠) and theoretical (∆E≠, 
TS-1) barriers to inversion (9.7 and 9.3 kcal/mol, 
respectively). 

Pathways of conformational isomerism of oxonium 
ion II (Scheme 2) include chair conformers with axial 
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(Ca) and equatorial (Ce) orientation of the proton on 
O1 and also flexible conformers 1,4-Ta and 1,4-Te. The 
first of these (Ca) corresponds to the global minimum, 
and Ce, 1,4-Ta, and 1,4-Te occupy local minima on  
the PES; sofa, half-chair, and 3,6-twist conformers 
correspond to maxima on the PES (Table 2). Of the 
two pathways, the more favorable is Ca ↔ 1,4-Ta ↔ Ce 
due to lower barrier to inversion (TS-2 against TS-1). 
The two calculation methods predict higher population 
of alternative Ce conformer, as compared to 1,4-Ta  
and 1,4-Te. On the other hand, the conformational 

Table 1. Energy parameters of the inversion C ↔ C* of  
1,3-dioxane (kcal/mol) 

Method 
Minima, ∆E 

a Maxima, ∆E≠
 
a 

2,5-T 1,4-T TS-1 TS-2 

STO-3G 3.6 4.5 6.9 5.3 

6-31G** 4.4 5.7 9.3 6.6 
a Relative to chair C (C*). 

Table 2. Energy parameters of the Ca ↔ Ce inversion of 
oxonium ion II (kcal/mol) 

Method 
Minima, ∆E Maxima, ∆E≠ 

Ca Ce 1,4-Ta 1,4-Te TS-1 TS-2 TS-3 

 STO-3G 0 1.7 2.5 4.3 10.9 7.2 08.2 

 6-31G** 0 1.7 2.9 4.3 13.2 7.5 11.3 

equilibrium is appreciably displaced toward Ca con-
former (Scheme 3). The fraction of Ca at 20°C should 
be no less than 95%. 

Scheme 3. 
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Also, we can state that the calculated barriers to the 
conformational chair–chair isomerization of 1,3-di-
oxane I are appreciably lower than those found for 
oxonium ion II: 6.9 and 10.9 kcal/mol (STO-3G) and 
9.3 and 13.2 kcal/mol (6-31G**), respectively. 

Thus our results indicate that protonation of one 
oxygen atom in the 1,3-dioxane molecule leads to 
appearance of an alternative nondegenerate chair con-
former and considerably increases the barrier to inver-
sion in the gas phase. 

This study was performed under financial support 
by the Ministry of Education of the Russian Federa-
tion in terms of the Integratsiya Program (project  
no. B 0080/1447). 
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